If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144x^2-36x=0
a = 144; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·144·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*144}=\frac{0}{288} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*144}=\frac{72}{288} =1/4 $
| 2u+17=19 | | 9p+11=20 | | |4u|+12=56 | | 63+28=n+32 | | (3x+16)+(2x+25)+(2x+8)+(4x-18)+(3x-7)=720 | | Sx25=150 | | 30=-24÷y | | 29=6v+5 | | 7x-3/2=5x-7 | | 50+(2x+20)+(2x+30)+x=360 | | (4q-1)=117 | | 5y+6=(-99) | | a=2(0.25)/2 | | -26=17x | | (9^(x-1))^(2)-30*(9^(x-1))+81=0 | | 20.5-0.75x=3-0.5x | | 2x(2x+x)=154 | | 3x^2-13x+11=0 | | 8=64/b | | 8x-15x-30x-51x)=53x+31x-172 | | 41/2-3/4x=3-1/2x | | 12+4(y-7)=8 | | 4(4p+6=16 | | 8x+12=2x+1 | | 3(n–5)=27. | | 11x-2=10x-5 | | 50-2x*38-2x=492 | | A(x)=(50-0.5x)=50x-0.5x2. | | 5m/6=20 | | D^4+16D^2)y=0 | | x/x+9=6/5 | | 3/4x-7=2/3x |